

4th European PEFC & H2 Forum 2–5 July 2013 Luzern, Switzerland

Membranes Development for Alkaline Water Electrolysis

U.F. Vogt, M. Gorbar, M. Schlupp, G. Kaup, A. Bonk, A. Hermosilla, A. Züttel

Empa, Laboratory Hydrogen & Energy Überlandstrasse 129 CH-8600 Dübendorf / Switzerland

Grant nº 278824

Materials Science & Technology

ELYGRID

Improvements to Integrate High Pressure Alkaline Electrolyzers for H₂ production from Renewable Energies to Balance the GRID

ELYGRID Project aims at contributing to the **reduction of the total cost** of hydrogen produced via electrolysis coupled to renewable energy sources (mainly wind turbines), and focusing on **mega watt size electrolyzers** (from 0,5 MW and up).

Hydrogen production via alkaline electrolysis

Left: Lurgi-Zdansky type alkaline electrolyser in 1949 Right: Electrolyser at Giovanola, Monthey

H₂ purity: 99.8 - 99.9 vol% O₂ purity: 99.3 - 99.6 vol%

CLYGRID

ials Scierce & Tech

3.Electrode mesh

5.Hydrogen duct

7.Electrolyte duct

6.Oxygen duct

(1) CLYGRID

4. Membrane (Asbestos)

Grant nº 278824

Cell mountening at IHT, Cell diameter 1.6 m

(Ullmann's Encyclopedia, 2006)

Zeng et al., Progress in Energy and Combustion Science 2010, 36, 307-326

Principle of water electrolysis

Membrane requirements:

- ion-permeable
- gas-tight
- chemically stable
- electrically insulating
- mechanically robust

Specific conductivity of KOH

Main objectives for Developing a new type of membrane

- stable at KOH temperatures up to 120° C
- ➢ for KOH concentration of 30wt%
- Reduction of cell voltage from 1.9 to 1.6 V
- Increase of current density by a factor 2: 200 → 400 mA/cm²
- Improve stack efficiency by 10 %
- Identification of the limiting factors for membrane functionality (aging, contaminations, ...)

terials Scierce 8 Techn

(I) CLYGRID

Grant nº 278824

Concept of Asbestos replacement

Dense composite layer

Polyphenylene Sulfide (PPS) felt:

T_m: 285°C T_g: 90°C

Chemically stable

• acids, bases, solvents

Porous (~85%)

Flexible

BUT:

Hydrophobic surface

Porosity too high

 \rightarrow gas bubbles break through

Repetitive unit of PPS

PPS felt 3,3mm BWF

Hydrophilic filler material selection

BaTiO₃ 98% purity, perovskite str., electroceramics

ZrO₂ 3YSZ (TOSOH), technical ceramics, SOFC

t(h) = 50, 150, 255, 500; 1000; 2000; 4000; 8000 **Method:**

ELYGRID

(120°C running)

ICP-MS (Inductively coupled plasma mass spectroscopy)

www.webmineral.com

ELYGRID meeting Brussels 4-5 June 2013

Corrosion Experiments, 85°C, 24 wt% KOH

YGRID

Dissolution effect of individual materials shows the concentration of elements (mg/L) found by ICP-MS for each particular material versus time in hours

	Mass loss of the particular filler (%)					
Time (hours)	Asbestos	Wollastonite	Olivine	ZrO ₂	BaSO ₄	BaTiO ₃
	(Mg,Si)	(Si <i>,</i> Ca)	(Mg <i>,</i> Si)	(Zr)	(Ba)	(Ba <i>,</i> Ti)
50	0.078	0.888	0.967	0.000	0.079	0.036
150	0.129	1.032	1.298	0.000	0.084	0.029
255	0.160	1.160	1.521	0.000	0.054	0.029
500	0.152	1.120	1.525	0.000	0.077	0.002
1000	0.194	1.405	1.827	0.000	0.050	0.002
2000	0.236	1.536	2.114	0.000	0.076	0.002
4000	0.300	1.740	2.674	0.000	0.050	0.001
8000	0.356	1.768	2.647	0.000	0.062	0.001
Ha vito						

laterials Science & Technology

MEMBRANE PRODUCTION

Inorganic Filler

- Hydrophilic surfaces
- Chemical stability
 - Finally increase of operating Temp.

BaSO₄, BaTiO₃, ZrO₂ Chemical stability

Bariumsulfate (BaSO₄) Wollastonite (CaSiO₃) Olivine ((Mg,Fe)₂[SiO₄]): Chemical similarity to asbestos Price

Organic Binder PSF

- Fixation of powder to felt
- Chemical stability
- Solubility in organic solvents
 - Advanced production from solution

Polysulphone (PSF) T_g: 187°C N-methyl-2pyrolidon (NMP)

MEMBRANE PRODUCTION

patent on membrane manufacturing filed in May 2013

Example for layer tape casting on PPS felt/net

schematic description of the inversion process

Kyoung-Yong Chun et al. Journal of Membrane Science, Volume 169, Issue 2, 2000

0.2 – 1.5 mm

SEM pictures of membranes

Pore size distribution determined by Bubble point measurementt (BPM)

	POROLUX™ 1000
Measuring principle	Pressure Step
Max pressure	35 bar
Min pore ⁽¹⁾	18 nm
Max pore ⁽²⁾	500 μm
Max flow	200 l/min
Sample holders	13-25-47 mm
Pressure sensors	2-50 bar
Flow sensors	10-200 l/min
FBP regulator	5-30 ml/min

lab-electrolyzer system for membrane characterization @ ambient conditions

U/I characteristics of new membranes

속 vito

œ

Resistance measurement

Grant nº 278824

(I) CLYGRID

Linear increase of current density 0-500 mA/cm²

[250 mA/min]

Gas purity measurements @ ambient conditions

Conclusions

- New composite membranes have been developed
- Processing by tape casting or screen printing on PPS felts or meshes
- Electrolysis performance better than that of asbestos
- High purity of hydrogen/oxygen gases
- Upscaling of membrane manufacturing to 1.6 m diameter in preparation

Thank you very much for your attention!

Acknowledgement

The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) for the Fel Cell and Hydrogen Joint Technology Initiative under grant agreement n° 278824

œ